
F Fermi National Accelerator Laboratory

FERMILAB-Conf-99/252

Optimization of a Readout Architecture for Pixel Detectors

Gustavo I.E. Cancelo

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1999

Published Proceedings of the 5th Workshop on Electrical for LHC Experiments (LEB’99),

Snowmass, Colorado, September 20-24, 1999

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.



OPTIMIZATION OF A READOUT ARCHITECTURE FOR PIXEL DETECTORS

Gustavo I. E. Cancelo*
*Fermilab

Abstract

This paper analyzes in detail some theoretical aspects in the modeling of a readout architecture for pixel detectors. In fact, these
problems are common to the design of data acquisition systems and other processes containing buffers and where the input and output
signals can be expressed by probability density functions. It is the purpose of this paper to point out that the same type of analysis can
be extended to other systems with the benefit of saving time in long Montecarlo simulations and prototype design. The example case in
which this paper is based on is the readout architecture of a column-based pixel detector amplifier and discriminator chip containing
more than 3000 pixels of 50µ x 400µ. Several readout strategies are compared searching for an optimal design, which minimizes data
loss and maximizes throughput. In particular, the probability of loosing pixel hits by overflowing the readout system is minimized
studying the behavior of the stochastic Marcov process. Also, the communication channel bandwidths and local buffering are
optimized.

I. INTRODUCTION

 Pixels Detectors are the future for most of the inner tracker and
vertex detector systems in high energy physic experiments. They
provide position information in the µm range and a very good
signal to noise ratio. The current work has been done at Fermilab,
as part of the specification and design of a pixel device to meet
BTeV experiment requirements [1]. Since BTeV plans to use the
pixel detector as part of the trigger system the most important
requirement is readout speed [2]. The primary goal is to achieve a
readout rate to cope with the number of hits generated by a
luminosity of 2 3210* p/cmð and a bunch crossing (BCO) time of
132 ns at Fermilb’s Tevatron. The current paper is organized as
follows. Section II describes the pixel readout architecture.
Section III analyses the problem of the buffers used to Time
Stamp the pixel hits. Section IV describes the problem of using
FIFOs for data equalization and optimization of the data output
channel. Section V discuses the Output Data Channel
optimization. Finally, Section V summarizes the results.

II.READOUT ARCHITECTURE

 Pixel detectors must provide spatial and temporal information
of a particle going through. The particle’s trajectory is calculated
based on the information provided by the hit pixels. If the pixel
provides only a binary output, the spatial resolution is directly
proportional to the pixel size. Instead, if the energy collected in
the group of pixels turned on by a single particle is also
measured, the hit can be calculated based on the center of mass of
that measurement. The later method improves the pixel’s spatial
resolution. The current example assumes a chip of 18 columns by
160 pixels. The pixel cell size is kept constant at 50µ x 400µ.
The pixel cell provides a digitized value of the collected charge.

 
 As said, the purpose of the current paper is to find a general

framework to design a pixel readout architecture subject to the
imposed requirements: maximum readout speed and minimum
data loss. Data loss is caused by overflows of the internal

resources (i.e. registers and buffers available). An optimization of
those resources is mandatory since they increase the so-called
“dead area” of the chip, the area that cannot be covered by pixel
detectors [3].
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Figure 1: Front-end hit discriminator and readout electronics
for pixels

 Figure 1 shows a possible readout architecture. This
architecture is not guarantied to be optimal but depicts
component blocks and points of analysis. The Pixel Array
readout is organized in columns. Each column has its own End of
Column Logic (EOC) at the bottom. The pixel cells store hit
location, a 2 or 3 bit value of the input, and a pointer to the Time
Stamp (TS) information. This pointer points to a set of Time
Stamp Registers (TSR) in its own EOC logic. Each TSR has its



own link, which connects it to all the pixel cells in the column.
The Pixel Readout Controllers (PRC) readout pixel hits into on
chip FIFO buffers. The pixel hit readout is chronologically
organized by its time stamp, facilitating the work of the trigger
processor and saving time in a very time critical job. Finally, the
data is readout off chip from the buffers using a high-speed
synchronous communication channel. The Output Data
Controller (ODC) performs this task.

 Every EOC logic controls a token passing mechanism to locate
the hit pixels. A pixel grouping technique with a two level of
hierarchy token passing is able to locate the next hit pixel within
one clock cycle, during the readout cycle of the previous hit pixel
[3].

III. ONE BUFFER OR MULTIPLE BUFFERS?

The readout architecture showed in Figure 1 has one TSR
buffer and EOC logic per column. However, any number of TSR
and EOC sets can be implemented. The columns can be grouped
to Time Stamp and to be readout using any number of TSR and
EOC sets. The first part of this section considers the case of a
single TSR buffer for the entire chip. The second part considers
multiple TSR buffers.

II.1 One buffer

The TSR buffers contribute to the chip’s dead area. Hence, its
number must be minimized. However, the random nature of the
pixel hit rate will make the number of required TSRs to fluctuate
in time. If all the TSRs are being used, the incoming hits are lost
until a TSR becomes available. This stochastic process can be
modeled as a Marcov process. A single TSR buffer can be
modeled as a birth-death process as shown in Figure 2. The TSR
buffer’s input and output are stochastic variables with Poisson

distributions with parameters λ and µ respectively [4]. The TSR
registers form a M/M/1 queue.
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Figure 2: Marcovian birth-death model for a single TSR buffer

 The state equation of an M/M/1 queue must satisfy the
Chapman-Kolmogorov equation of state transition. This leads to
a complex differential-difference equation. However, the most
important system characteristics can be obtained analyzing the
steady state of the queue. The balance equations are:
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Substituting (2) in (1):
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It is clear that the system is stable for values of ρ<1. That is,
when the average input rate is smaller than the average output
rate, otherwise the buffer size grows unbounded. ρ also
represents the utilization factor, that is the proportion of time the
output is busy. The M/M/1 first and second moments can be
easily derived:
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Where E[N] is the expectation and Var[N] the variance of the
process. According to Little’s formula[4]. The average response
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II.2 Multiple buffers

On the other hand, a multiple buffer TSR set can be analyzed
as follows. Figure 3 shows the state transition diagram of a 2
buffer system. The solution can be generalized for m-buffers.
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Figure 3 State transition diagram of a 2 buffer system.

The balance equations can be inferred from the transition

diagram:
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And the normalization factor is 1),(
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The solution of this system can be found by direct substitution
(see [5]) and is expressed as:
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Where,
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Since k1 and k2 are independent, this system of two buffers
can be generalized to an m-buffer system in the following way:
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Then, the Poisson random variables describing the TSR buffer
input and output are statistically independent. The expectation
and variance for each TSR buffer can be calculated as:
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Several important conclusions can be drawn from the
comparison of (4) and (5) with (13) and (14). First, we are
interested in the average number of occupied TSR buffers. If a
system is designed with only one TSR buffer common to all the
columns, then the average number of occupied buffers is given by
equation (4). The values of λ and µ can be calculated based on
the average number of hits and the average number of TSR
released every cycle. λ = p.n/T where p is the probability of
having a hit during a certain time interval ∆T, and n is the
number of ∆T intervals in T. In the current example, λ depends
on the pixel hit rate which for a fixed pixel chip is directly
proportional to the luminosity of the accelerator’s beam
generating the events. The maximum value that λ can reach in the
single TSR buffer architecture is given by the use of one TSR
every cycle of the accelerator’s beam (BCO). A system
demanding one TSR every BCO has a λ equal to 7.57.
Accordingly, µ is calculated based on the pixel-hit distributions
along the pixel chip. These distributions are obtained from
simulations. In our case µ = pµ .n/T= 20.41

Then, [ ]E N = 0.58

In the multibuffer approach, the expectation values can be
calculated based on the input’s probability distribution function
(pdf). For instance, let’s assume one TSR buffer per pixel column
as shown in Figure 1. According to [6][7], the hit rate distribution
in the pixel detector planes follows an inverse quadratic law
respect to the proximity of the pixel to the center of the beam:
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Where r, x, and y are the coordinates from a pixel to the center
of the beam. Since the pixels are handled by column readout, we
are interested in all the hits affecting an entire column. Hence
integrating along the y-axis:
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The resulting pdf is shown in Figure 4.

Figure 4 Probability density function of an 18-column pixel chip

It is clear that the total number of TSR buffers used in the
multibuffer approach is the sum of the expectation in every
column. That is:
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The total expectation is calculated based on the λi values
obtained from the column pdfs functions (Figure 4) and the
already calculated µ.

[ ] 08.2=NEtot

It is easy to see that in the case of the pixel detector chip, if
every column is assigned to its own TSR set, when a beam event
hits more than one column, the same Time Stamp will be stored
in as many registers as columns are hit. In average, the

[ ] [ ]totE N E N ratio equals the average column hit rate per bunch

crossing of the accelerator. In other words it is a function of the
accelerator’s luminosity. This ratio can easily reach 5 for the
expected luminosity of the Tevatron at Fermilab (2 3210* p/cm²).

As important as the average number of occupied buffers is its
dynamic fluctuation. It was said that if the number of TSR
registers is overflowed all new data is lost until the readout
system releases a TSR. A good measure to this problem is
provided by the Variance of the process. The number of required
TSR buffers can be calculated based on the 1st and 2nd moments
and the maximum data loss allowed in the system. Let’s allow a
maximum data loss of 10exp(-5). This is equivalent to an entry of
3.12 in the Gaussian error function. In other words the buffer
must be at least 3.12*σ+Ei[N] deep. Where σ is the standard
deviation. This value can be used to calculate the maximum ρ
value (ρ=λ/µ) allowed. In the current example, since the ρ values
are already given, we can calculate the minimum buffer size to
keep the data loss less than a certain value (p.e. 10exp(-5)). In the
single TSR buffer approach the minimum buffer depth (MBD) is:
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In the multiple TSR approach, the buffers must be considered
individually since they may overflow separately. However, since
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the hit distribution is monotonic decreasing with the distance to
the beam it suffices to analyze the busiest column (i.e. column 1).
Then,

[ ] 4.115.0*12.3][*)_(_ 1111 =+=+= σσ NEerrormxerfinvNMBD  (17)

IV. THE FIFO BUFFERS:

The pixel data is readout off chip using a single high-speed
synchronous communication channel, the Output Data Controller
(ODC). In order to optimize the overall pixel readout system’s
throughput the ODC utilization must be as close to 100% as
possible. This can be achieved having one or more FIFO buffers
inside the pixel chips to equalize the random pixel hit data
flowing from the pixel array. Different schemes can be analyzed
based on the two-buffer tandem system. The simplest system
contains one TSR buffer and a FIFO buffer. Other systems with
multiple TSRs and FIFOs can be calculated using the

corresponding λi and µi.

The two-stage tandem network is shown in Figure 5a. The state
diagram is shown in Figure 5b. The system has some similarities
with the one described by (11). This system has 2 buffers in
series instead of parallel.
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Figure 5a) Two-stage tandem network. b) State transition
diagram

The balance equations can be inferred from the transition
diagram:
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The solution of this system can be expressed as:
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Again, we find that ρ1 and ρ2 are independent in the steady
state. The expected number of registers occupied in each buffer
can be obtained analyzing the marginal probability

ρρ kkpkNP 1
11111 )1()()( −=== . The last equation does not

reflect the overflow problem in the TSR buffers since the state
diagram was not bounded. It is worth to mention that no overflow
occurs in the FIFO buffers since the data can be held in the pixels
until the FIFO full condition goes away. The overflow can be
calculated limiting the size of the buffers. Let’s assume that the

sizes of the TSR and FIFO buffers are n and m respectively.
Then the overflow is:

ρρρρλ

λλλ

k

k

mnpnpnp

nk k
kkpnkP

n
m

m

ovP

21

2

1 2

221
1

1

1
211

)1()1(.

),(....)2,(.)1,(.

),()(

−−=

+++=

=>=

∑

∑ ∑

=

> =

.
1

1
)1()1.(

)1()1.(

2

1
2

211

1
2211

2

21

ρ
ρ

ρρρλ

ρρρρλ

−
−

−−=

−−=

=

=
∑

m
n

m
n

k

k

)1()1.( 1
211 ρρρλ =−−= mn

ovP (19)

Figure 6 shows the probability of overflowing the TSR buffer
as a function of the number of registers in that buffer. The
number of registers in the FIFO buffer is used as a parameter.
The plots show that the Pov decreases when the number of
registers in either buffer is increased.

Figure 6 TSR overflow probability function

The TSR and FIFO buffer system overflow (19) was obtained
analytically from equation (18). However, sometimes
p(k1,k2,…,kn) does not have an analytical expression and must be
represented by its transition matrix:
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then, the probability distribution function of the steady state
can be found taking

( )npv
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= lim (20)

Where v represents the steady state of the system and P(n) is
the n-iterated transition matrix. It evident that for n→∞ the
solution to this system must accomplish:
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The last equation can be solved analytically or numerically.
Then, the overflow can then be obtained computing:
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V. MAXIMIZATION OF THE OUTPUT
CHANNEL UTILIZATION

The last point in the analysis of this architecture concerns the
output data channel (ODC). It is clear, that from the system’s
performance point of view the utilization of the output channel
must be maximized. The utilization is maximized by reading-out
data from the pixels, as soon as possible and keeping the FIFO(s)
not empty, unless the pixel array is empty. The analysis of this
system is similar to the one of Section III. The system can be
designed with one or more FIFOs. The equations describing the
probability distribution function, and moments are the same as
(3), (4) and (5) for the single buffer and (12), (13), and (14) for
the multi FIFO approach. It is obvious that in order to maximize
the utilization of the output channel, the speed of the data input to
the buffers must be higher than the speed of the output. Then, the
output is the bottleneck of the system and the FIFOs are loaded
unless the pixel array is empty. This condition makes the data
output work close to 100% of utilization. The Utilization (U) of a
single FIFO system (M/M/1 queue) is equal to ρ. If  U=ρ≥1(i.e
λ≥µ) the system becomes marginally stable or unstable. Since the
FIFOs do not loose data, as is the case with the TSR buffers, this
is not an undesired condition.

The output data channel is usually designed based on system
constrains such as data path width and data output clock rate.
This parameters are imposed by the mechanical and electrical
characteristics of the inter-connective system, and they define the
µ of the Poisson distribution of the output channel. The λ will

depend on the input’s architecture. That is the number of FIFO
buffers. The convenience of having one or more FIFO buffers has
a similar analysis to the one in Section III. A single buffer system
with a data input rate λ equivalent to the sum of the individual

input rates λi of the multi-buffer system, will minimize the buffer
size and, hence, the dead area.

In practice, a high speed and small size (i.e. 8-bits, 100MHz
clock) data output is preferred due to system integration issues. A
single buffer can keep ρ≅1 by having an internal wider data bus,
transferring all the information corresponding to one pixel, or a
group of pixels, at once (i.e. pixel coordinates, Time Stamp, and
digitized input value).

VI. CONCLUSIONS

This paper analyzed some theoretical aspects in the modeling
of a readout architecture for pixel detectors. Most of this analysis
can be extended to data acquisition systems where buffers are
used to equalize data flows coming from different sources. The
analysis of systems as random processes can be very
advantageous, avoiding long Montecarlo simulations and costly
prototype designs. The particular case study in which this paper
is based on, the readout architecture of a column-based pixel
detector amplifier and discriminator chip, has shown that a single
TSR buffer will minimize the dead area, minimizing the total
number or buffer registers, while providing the same
performance. A measure of relative buffer size can be defined as:

[ ]
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where |MBDi| and |MBD| are integer numbers representing the
minimum buffer size needed. The BSR of one TSR buffer per
column versus a single TSR buffer is 9. Section IV showed how
to design a system to minimize overflow and what is the
influence of TSR and FIFO buffer size in the overflow measure.
It was also shown that a single FIFO system can keep very small
overflow rates with small size buffers Finally, Section V showed
that a saturated system is convenient to maximize the output
channel utilization.
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